
Between now and 2025, the ability of
organizations and their products, sys-

tems, and services to compete, adapt, and
survive will depend increasingly on soft-
ware and the ability to integrate related
software-intensive systems into systems of
systems (SOS). As is being seen in current
products (automobiles, aircraft, radios)
and services (financial, communication,
defense), software provides both compet-
itive differentiation and rapid adaptability
to competitive change. It facilitates rapid
tailoring of products and services to dif-
ferent market sectors and rapid and flexi-
ble supply chain management.

The resulting software-intensive sys-
tems and SOS face ever-increasing
demands to provide safe, secure, and reli-
able systems; provide competitive dis-
criminators in the marketplace; support
the coordination of multi-cultural global
enterprises; enable rapid adaptation to
change; and help people cope with com-
plex masses of data and information.
These demands will cause major differ-
ences in the processes currently used to
define, design, develop, deploy, and
evolve a diverse variety of software-inten-
sive systems and software-intensive SOS
(SISOS).

SISOS Trends and Their
Influence on Systems and
Software Engineering Processes
Today’s trend towards larger, software-
intensive systems and SOS often require
much more complex systems and software
engineering processes and better integra-
tion of these processes across the systems
engineering and software engineering
organizations. This section provides an
overview of key SISOS historical trends,
features, development organizations, and
potential pitfalls.

Historical Evolution of Processes
Historically (and even recently for some
forms of agile methods), systems and soft-
ware development processes and maturity
models were recipes for standalone
stovepipe systems with high risks of inade-
quate interoperability with other stovepipe
systems. Experience has shown that such
collections of stovepipe systems cause
unacceptable delays in service, uncoordi-
nated and conflicting plans, ineffective or
dangerous decisions, and an inability to
cope with rapid change.

During the 1990s and early 2000s,
standards such as the International
Organization for Standardization (ISO)/

International Electrotechnical Commis-
sion (IEC) 12207 [1] and ISO/IEC 15288
[2] began to emerge that situated systems
and software project processes within an
enterprise framework. Concurrently,
enterprise architectures such as IBM
Zachman Framework [3], Reference
Model for Open Distributed Processing
(RM-ODP), [4] and the U.S. Federal
Enterprise Architecture Framework [5],
have been developing and evolving along
with a number of commercial Enterprise
Resource Planning (ERP) packages.

These frameworks and support pack-
ages are making it possible for organiza-
tions to reinvent themselves around trans-
formational, network-centric SOS. As dis-
cussed in [6], these are necessary SISOS
that have equally tremendous opportunities
for success and risks of failure. Examples
of successes are Federal Express; Wal-
Mart; and the U.S. Command, Control,
Intelligence, Surveillance, and
Reconnaissance (C2ISR) system in Iraq.
Examples of failures are the Confirm trav-
el reservation system; K-Mart; and the U.S.
Advanced Automation System for air traf-
fic control. ERP packages have been the
source of many successes and many fail-
ures, implying the need for considerable
risk/opportunity assessment before com-
mitting to an ERP-based solution.

Key SISOS Features
There are many definitions of SOS [7]. For
this article, the distinguishing features of
SOS are not only that they integrate multi-
ple, independently developed systems, but
also that they are very large, dynamically
evolving, and unprecedented with emer-
gent requirements and behaviors, and
complex socio-technical issues to address.

4 CROSSTALK The Journal of Defense Software Engineering May 2006

21st Century Processes for Acquiring 21st Century
Software-Intensive Systems of Systems

Dr. Barry Boehm and Jo Ann Lane
University of Southern California

Our experiences in helping to define, acquire, develop, and assess 21st century software-
intensive systems of systems (SISOS) have taught us that traditional 20th century
acquisition and development processes do not work well on such systems. This article
summarizes the characteristics of such systems, and indicates the major problem areas
in using traditional processes on them. We also present new processes that we and oth-
ers have been developing, applying, and evolving to address 21st century SISOS. These
include extensions to the risk-driven spiral model to cover broad (many systems), deep
(many supplier levels), and long (many increments) acquisitions needing rapid fielding,
high assurance, adaptability to high-change traffic, and complex interactions with evolv-
ing commercial off-the-shelf products, legacy systems, and external systems.

Transforming: Business, Security,Warfighting

Characteristic

edocfosenilnoillim001-01eziS

Number of external interfaces 30-300

Number of coopetitive suppliers 20-200

Depth of supplier hierarchy 6-12 levels

Number of coordination groups 20-200

Range of Values

Table 1: Software-Intensive Systems of Systems (SISOS) Solution Spaces

Monday, 1 May 2006
Track 2: 8:00 – 11:15 a.m.

Ballroom B

21st Century Processes for Acquiring 21st Century Software-Intensive Systems of Systems

May 2006 www.stsc.hill.af.mil 5

Table 1 provides some additional charac-
teristics of SISOS.

SISOS Development Organization
Trends and Issues
There is often a lead system integrator
who is responsible for developing SOS
architecture, identifying the suppliers and
vendors to provide various SOS compo-
nents, adapting the architecture to meet
evolving requirements and selected vendor
limitations or constraints, overseeing the
implementation efforts, and planning and
executing the SOS level integration and
test activities.

Keys to successful SOS development
are the ability to: achieve timely decisions
with a potentially diverse set of stakehold-
ers; quickly resolve conflicting needs; and
coordinate the activities of multiple ven-
dors who are currently working together to
provide capabilities for the SOS, but are
often competitors on other system devel-
opment efforts (sometimes referred to as
“coopetitive” relationships).

Potential SISOS Pitfalls
Our work in supporting SISOS develop-
ment programs has shown that using a risk-
driven spiral process with early attention to
SISOS risks and systems architecting meth-
ods can avoid many of the SISOS develop-
ment pitfalls [8]. A prioritized list of the
top 10 SISOS risks we have encountered
includes the following:
1. Acquisition management and staffing.
2. Requirements/architecture feasibility.
3. Achievable software schedules.
4. Supplier integration.
5. Adaptation to rapid change.
6. Systems and software quality factor

achievability.
7. Product integration and electronic

upgrade.
8. Commercial off-the-shelf (COTS) soft-

ware and reuse feasibility.
9. External interoperability.
10. Technology readiness.
Strategies for addressing these risks are
described in [8].

A Scalable Spiral Process
Model for 21st Century SISOS
In applying risk management to the set of
risks described above, the outlines of a
hybrid plan-driven/agile process for devel-
oping SISOS product architecture are
emerging. To keep SISOS developments
from becoming destabilized from large
amounts of change traffic, it is important to
organize development into plan-driven
increments in which the suppliers develop
to interface specifications that are kept sta-

ble by deferring changes, so that the systems
can plug and play at the end of the incre-
ment (nobody has yet figured out how to do
daily builds for these kinds of systems).

However, for the next increment to hit
the ground running, an extremely agile team
needs to be concurrently doing a continuous
market, competition, and technology watch;
change impact analysis; COTS refresh; and
renegotiation of the next increment’s prior-
itized content and the interfaces between the
suppliers’ next-increment interface specifi-
cations. This requires new approaches not
only to process management, but also to
staffing and contracting. The following sec-
tions elaborate on this emerging process
architecture and its challenges.

21st Century SISOS Development
and Evolution Modes
In the next 10 to 20 years, several 21st cen-
tury system and software development and

evolution modes will have emerged as the
most cost-effective ways to develop needed
capabilities in the context of the trends dis-
cussed earlier. The four most common
modes are likely to be exploratory develop-
ment of unprecedented capabilities, busi-
ness model-based user programming, hard-
ware and software product lines, and net-
work-centric SOS that will necessarily be
software-intensive [6]. There are new chal-
lenges for organizations in the process of
transforming themselves from collections
of weakly coordinated, vertically integrated
stovepipe systems into seamlessly interop-
erable network-centric SOS (NCSOS).

Architectures of these NCSOS are high-
ly software-intensive and need to be simulta-
neously robust, scalable, and evolvable in
flexible but controllable ways. The NCSOS
development projects need processes such
as the Internet spiral development process
[9], but due to competitive pressures, their

Spiral 2005 Process Model
The spiral model, first introduced in 1986, has continued to evolve to meet the needs
of our evolving development processes. The figure below shows the latest version of
the spiral model. Keys to this model are the use of success-critical stakeholder win-
win negotiations to determine the system’s objectives, constraints, and primary solu-
tion alternatives; and the life cycle anchor points that are the common system/software
stakeholder commitment points for concurrent engineering. (These often replace the
more traditional sequential Department of Defense system development milestone
reviews such as System Requirements Review, Preliminary Design Review, and Initial
Operational Capability.) The life cycle anchor points include:
• Life Cycle Objectives (LCO): The stakeholders’ commitment to support system

architecting.
• Life Cycle Architecture/Development Increments (____DIN

LCA
): The stakeholders’

commitment to support the full life-cycle development.
• Incremental Operational Capabilities/Development Increments (____DIN

IOC
): The

stakeholders’ commitment to support operations.
The 2005 spiral framework provides a common frame of reference for the process
views that we will subsequently describe.

Cumulative Cost, Time, Product, and Process Detail (Risk-Driven)

Transforming: Business, Security,Warfighting

6 CROSSTALK The Journal of Defense Software Engineering May 2006

processes must generally operate on much
tighter timescales than were involved in the
early evolution of the Internet.

Evolutionary development, business
model-based user programming, and hard-
ware and software product line develop-
ment as described in [10] are key trends for
the development and evolution of SISOS
components. In the following sections, we
describe an emerging, scalable spiral
process model for developing and evolving
21st century product lines and NCSOS.

Overview of the Scalable Spiral
Process Model
Complex systems and complex processes
require multiple views to understand vari-
ous aspects of the system and its develop-
ment processes. And these multiple views

require some type of anchor points to help
relate one view to another. Our first view
begins with the spiral model view shown in
the sidebar (see page 5).

Based on our experiences in adapting
the spiral model to the development of
SISOS representative of the 21st century
trends discussed earlier, we have been con-
verging on a scalable spiral process model.
This model has shown in partial implemen-
tation to date to scale well from small e-ser-
vices applications to super-large defense
SOS and multi-enterprise supply chain
management systems. The model contains
familiar elements, but organizes them in
ways that involve new approaches to enter-
prise organization, contracting, incentives,
staffing, education, and career develop-
ment. Figure 1 shows a single increment of

the development and evolution portion of
the model. It assumes that the organization
has developed the following:
• A best-effort definition of the system’s

steady-state capability.
• An incremental sequence of prioritized

capabilities culminating in the steady-
state capability.

• A feasibility rationale providing suffi-
cient feasibility evidence for each incre-
ment and the overall system. This evi-
dence should show that system archi-
tecture will support the incremental
capabilities, that each increment can be
developed within its available budget
and schedule, and that the series of
increments create a satisfactory return
on investment for the organization and
mutually satisfactory outcomes for the
success-critical stakeholders.
As seen in Figure 1, the model is orga-

nized to simultaneously address conflicting
21st century challenges of rapid change
and high assurance of dependability. It also
addresses the need for rapid fielding of
incremental capabilities with a minimum of
rework, and the other major 21st century
trends involving integration of systems and
software engineering, COTS components,
legacy systems, globalization, and user
value considerations [10].

The need to deliver high-assurance
incremental capabilities on short, fixed
schedules means that each increment needs
to be kept as stable as possible. This is par-
ticularly the case for a large SOS with deep
supplier hierarchies (often six to 12 levels)
in which a high level of rebaselining traffic
can easily lead to chaos. In keeping with the
use of the spiral model as a risk-driven
process model generator, the risks of
destabilizing the development process
make this portion of the project into a
waterfall-like, build-to-specification subset
of the spiral model activities. The need for
high assurance of each increment also
makes it cost-effective to invest in a team
of appropriately skilled personnel to con-
tinuously verify and validate the increment
as it is being developed.

However, the previous discussion on
deferring change does not imply deferring
change impact analysis, change negotiation,
and rebaselining until the beginning of the
next increment. With a single development
team and rapid rates of change, this would
require a team optimized to develop stable
plans and specifications to spend much of
the next increment’s scarce calendar time
performing tasks better suited to agile
teams. Instead, Figure 1 shows how the spi-
ral project would organize itself as follows:
• A plan-driven team transforms a build-

Orient with respect to stakeholders

priorities, feasibility, and risks.

• Risk/Opportunity analysis.

• Business case/mission analysis.

• Prototypes, models, simulations.

Operate as current system

Accept new system

Act on plans and specifications.

• Keep development stabilized.

• Change impact analysis,

 preparation for next cycle

 (mini observe, orient, decide,

 act loop).

Decide on next-cycle capabilities,

architecture upgrades, and plans.

• Stable specifications, commerical

 off-the-shelf upgrades.

• Development, integration, verification and

 validation, risk-management plans.

• Feasibility rationale.

Life Cycle Architecture Milestone for Cycle

Observe new/updated objectives,

constraints and alternatives.

• Usage monitoring.

• Competition, technology,

 marketplace intelligence,

 surveillance, and

 reconnaisaince.

Figure 2: Observe, Orient, Decide, Act (OODA) Loop

Figure 1: The Scalable Spiral Process Model – Increment Activities

21st Century Processes for Acquiring 21st Century Software-Intensive Systems of Systems

May 2006 www.stsc.hill.af.mil 7

to DI1 life-cycle architecture (LCA)
package of validated specifications and
plans (using one or more spiral cycles or
intermediate builds) into a completed
initial operational capability deliverable.

• Meanwhile, an independent verification
and validation (IV&V) team continually
verifies and validates the plan-driven
increment under development.

• Meanwhile, an agile team adjusts and
rebaselines the build-to specifications
and plans for the next increment (DI2)
for hand-off to the plan-driven team.

The process in Figure 1 is then applied
similarly to the subsequent cycles in the
spiral chart.

The appropriate metaphor for address-
ing rapid change is not a build-to-specifica-
tion metaphor or a purchasing-agent
metaphor, but is an adaptive C2ISR
metaphor as shown in Figure 2. It involves
an agile team performing the first three
activities of the C2ISR Observe, Orient,
Decide, Act (OODA) loop for the next
increments, while the plan-driven develop-
ment team is performing the Act activity
for the current increment. Observing involves
monitoring changes in relevant technology
and COTS products in the competitive
marketplace, in external interoperating sys-
tems, and in the environment; and moni-
toring progress on the current increment to
identify slowdowns and likely scope defer-
rals. Orienting involves performing change
impact analysis, risk analysis, and trade-off
analysis to assess candidate rebaselining
options for upcoming increments. Deciding
involves stakeholder renegotiation of the
content of upcoming increments, architec-
ture rebaselining, and the degree of COTS
upgrading to be done to prepare for the
next increment. It also involves updating
the future increments’ feasibility rationales
to ensure that renegotiated scopes and
solutions can be achieved within budget
and schedule. The LCA milestone at the
bottom of Figure 2 corresponds with the
DIN+1 Rebaselined LCA increment in
Figure 1.

A successful rebaseline means that the
plan-driven development team can hit the
ground running at the beginning of the
Act phase of developing the next incre-
ment, and the agile team can hit the
ground running on rebaselining defini-
tions of the increments beyond. Figure 3
shows how this three-team cycle (lean,
plan-driven, stabilized developers; thor-
ough IV&V people; and agile, proactive
rebaseline people) plays out from one
increment to the next, including the early
product line or SOS inception and elabo-
ration phases with their pass-fail, life-cycle
objectives and LCA exit milestones. The

shaded activities in Figure 3 are the same
set of activities that are shown in detail in
Figure 1. Note that OO&D in each agile
rebaselining increment stands for observe,
orient, and decide, and not object-oriented
design. The (A) below it stands for the Act
portion of the OODA loop for the cur-
rent increment. Note also that, as much as
possible, usage feedback from the previ-
ous increment is not allowed to destabilize
the current increment, but is fed into the
definition of the following increment. Of
course, some level of mission-critical
updates will need to be fed into the cur-
rent increment, but only when the risk of
not doing so is greater than the risk of
destabilizing the current increment.

As with command and control, the
OO&D rebaselining portion of the project
is not a sequential waterfall process.
Instead, it is a risk-driven set of concurrent
prototyping, analysis, and stakeholder rene-
gotiation activities that lead to a best-possi-
ble redefinition of plans and specifications
to be used by the stabilized development
team for the next increment. For people
familiar with the Department of Defense
5000 series of acquisition milestones,
Figure 4 provides a mapping of them onto
the Spiral 2005 anchor points.

Acquisition as C2ISR Versus Purchasing
The 20th century purchasing agent or con-
tracts manager is most comfortable with a

Figure 4: Spiral 2005 Anchor Points in Relation to Department of Defense 5000 Milestones

Figure 3: The Scalable Spiral Process Model: Life Cycle View

Transforming: Business, Security,Warfighting

8 CROSSTALK The Journal of Defense Software Engineering May 2006

fixed procurement to a set of pre-specified
requirements; selection of the least-cost,
technically adequate supplier; and a mini-
mum of bothersome requirements
changes. Many of our current acquisition
institutions – regulations, specifications,
standards, contract types, award fee struc-
tures, reviews and audits – are optimized
around this procurement model.

Such institutions have been the bane
of many projects attempting to deliver
successful systems in a world of emerg-
ing requirements and rapid change. The
project people may put together good
technical and management strategies to
do concurrent problem and solution def-
inition, teambuilding, and mutual-learn-
ing prototypes and options analysis.
Then they find that their progress pay-
ments and award fees involve early deliv-
ery of complete functional and perfor-
mance specifications. Given the choice
between following their original strate-
gies and getting paid, they proceed to
marry themselves in haste to a set of pre-
mature requirements then find them-
selves repenting at leisure for the rest of
the project (if any leisure time is avail-
able).

Build-to-specification contract mecha-
nisms still have their place, but it is just for
the stabilized increment development. If
such mechanisms are applied to the agile
rebaselining teams, then frustration and
chaos ensues. What is needed for the three-
team approach are separate contracting
mechanisms for the functions, under an
overall contract structure, enabling them to
be synchronized and rebalanced across the
life cycle. Also needed are source-selection
mechanisms more likely to choose the
most competent supplier, using such
approaches as competitive exercises to de-
velop representative system artifacts using
the people, products, processes, methods,
and tools in the offeror’s proposal.

A good transitional role model is the
Command Center Processing and Display-
Replacement (CCPDS-R) project
described in [11]. Its U.S. Air Force cus-
tomer and TRW contractor (selected using
a competitive exercise such as the one
described earlier) reinterpreted the tradi-
tional defense regulations, specifications,
and standards. They held a preliminary
design review: This was not a PowerPoint
show at month four, but a fully validated
architecture and demonstration of the
working, high-risk user interface and net-
working capabilities at month 14. The
resulting system delivery, including more
than one million lines of software source
code, exceeded customer expectations
within budget and schedule.

Other good acquisition approaches are
the Scandinavian Participatory Design
approach [12], Checkland’s Soft Systems
Methodology [13], lean acquisition and
development processes [14], and Shared
Destiny-related contracting mechanisms
and award fee structures [15, 16]. These all
reflect the treatment of acquisition using a
C2ISR metaphor rather than a purchasing-
agent metaphor.

Model Experience to Date
and Conclusions
The scalable spiral model has been evolv-
ing with experience and has not yet been
fully implemented on a large, completed
project. However, its principles and prac-
tices build on many successful project
experiences and unsuccessful project
lessons learned. Specific examples of
projects that have successfully balanced
agile and plan-driven methods are the
agile-based ThoughtWorks lease manage-
ment project [17] and the plan-based
CCPDS-R project [11]. More generally, J.
Collins’ book, “Good to Great” [18]
identifies 11 companies with exceptional
performance records as having success-
fully transformed themselves into having
both a strong ethic of entrepreneurship
and a strong culture of discipline.

The use of concurrent IV&V teams
has been successfully practiced and
evolved since the 1970s [19]. More
recent successful continuous IV&V
practices include the continuous build
practices at Microsoft [20] and in agile
methods [21]. Proactive investments in
agile next-increment teams are success-
fully used in exploiting disruptive tech-
nologies at companies such as Hewlett
Packard (HP), Seagate, and Johnson and
Johnson [22]; and in practicing open
innovation in companies such as HP,
IBM, Intel, and Lucent [23]. Successful
use of the anchor point milestones and
evolutionary development using the
Rational Unified Process [16] and the
WinWin Spiral model [24] has been
experienced on numerous small, medi-
um, and large software projects and on
hardware projects at such companies as
Xerox and Johnson and Johnson. Partial
implementations of the model are also
providing improvement and are being
evolved on the large-scale U.S. Army
Future Combat Systems program, large
space systems, and commercial supply
chain systems [8].

Experience to date indicates that the
three teams’ activities are not as neatly
orthogonal as they look in Figures 1 and 3.
Feedback on development shortfalls from
the IV&V team either requires a response

from the development team (early fixes
will be less disruptive and expensive than
later fixes), or deferral to a later increment,
adding work and coordination by the agile
team. The agile team’s analysis and proto-
types addressing how to accommodate
changes and deferred capabilities need to
draw on the experience and expertise of
the plan-driven development team, requir-
ing some additional development team
resources and calendar time. Additional
challenges arise if different versions of
each increment are going to be deployed
in different ways into different environ-
ments. The model has sufficient degrees
of freedom to address such challenges,
but they need to be planned within the
project’s schedule and budget.

In working with our commercial and
aerospace affiliates on how they can best
evolve to succeed as 21st century enter-
prises, we have found several 20th centu-
ry process-related institutions that need
to be significantly rethought and
reworked to contribute to success. Two
key leading areas for SISOS development
that need rethinking are acquisition prac-
tices and human relations [10]. Other
institutions that also need rethinking and
rework are continuous process improve-
ment (repeatability and optimization
around the past versus adaptability and
optimization around the future), supplier
management (adversarial win-lose versus
team-oriented win-win), internal research
and development strategies (core capabil-
ity research plus external technology
experimentation versus full-spectrum
self-invention), and enterprise integration
(not-invented-here stovepipes versus
enterprise-wide learning and sharing).u

References
1. International Organization for Stan-

dardization. Information Technology –
Software Life Cycle Processes.
ISO/IEC 12207: 1995. Geneva,
Switzerland: ISO, 1995.

2. International Organization for Stan-
dardization. Systems Engineering –
System Life Cycle Processes. ISO/
IEC 15288: 2002. Geneva, Switz-
erland: ISO, 2002.

3. Zachman, J. “A Framework for Infor-
mation Systems Architecture.” IBM
Systems Journal 26.3 (1987): 276-292.

4. Putman, J. Architecting With RM-
ODP. Prentice Hall, 2001.

5. Federal Chief Information Officer
Council. A Practical Guide to Federal
Enterprise Architecture Vers. 1.0.
Washington, D.C.: FCIO, Feb. 2001.

6. Harned, D., and J. Lundquist. “What
Transformation Means for the

21st Century Processes for Acquiring 21st Century Software-Intensive Systems of Systems

May 2006 www.stsc.hill.af.mil 9

Defense Industry.” The McKinsey
Quarterly 3 Nov. 2003: 57-63.

7. Lane, J., and R. Valerdi. “Synthesizing
System-of-Systems Concepts for Use in
Cost Estimation.” IEEE SMC, 2005.

8. Boehm, B., A.W. Brown, V. Basili, and
R. Turner. “Spiral Acquisition of
Software-Intensive Systems of Sys-
tems.” CrossTalk May 2004: 4-9
<www.stsc.hi l l .af.mil/crosstalk/
2004/05/0405boehm.html>.

9. U.S. Air Force-Scientific Advisory
Board. Information Architectures
Study. Washington, D.C.: U.S. Air
Force, 1994.

10. Boehm, B. “Some Future Trends and
Implications for Systems and Software
Engineering Processes.” USC-CSE-
TR-2005-507. Los Angeles, CA: Uni-
versity of Southern California, 2005.

11. Royce, W.E. Software Project Man-
agement. Addison-Wesley, 1998.

12. Ehn, Pelle. Work-Oriented Design of
Computer Artifacts. Lawrence Earl-
baum Assoc., 1990.

13. Checkland, P. Systems Thinking,
Systems Practice. 2nd ed. Wiley, 1999.

14. Womack, J., and D. Jones. Lean
Thinking: Banish Waste and Create
Wealth in Your Corporation. Simon &
Schuster, 1996.

15. Deck, M., M. Strom, and K. Schwartz.
“The Emerging Model of Co-

Development.” Research Technology
Management Dec. 2001.

16. Rational, Inc. Driving Better Business
With Better Software Economics.
Rational Software Corp., 2001.

17. Elssamadisy, A., and G. Schalliol.
Recognizing and Responding to ‘Bad
Smells’ in Extreme Programming.
Proc. of the 24th International
Conference on Software Engineering,
Orlando, FL, May 2002: 617-622.

18. Collins, J. Good to Great. Harper
Collins, 2001.

19. Rubey, J.R., J.A. Dana, and P.W. Biché.
“Quantitative Aspects of Software
Validation.” IEEE Transactions on
Software Engineering June 1975: 150-
155.

20. Cusumano, M., and R. Selby. Microsoft
Secrets. Harper Collins, 1996.

21. Beck, K. Extreme Programming
Explained. Addison-Wesley, 1999.

22. Christensen, C. The Innovator’s
Dilemma (Harper Business Essentials).
Harper Collins, 2000.

23. Chesbrough, H. Open Innovation:
The New Imperative for Creating and
Profiting from Technology. Harvard
Business School Press, 2003.

24. Boehm, B., A. Egyed, J. Kwan, D. Port,
A. Shah, and R. Madachy. “Using the
WinWin Spiral Model: A Case Study.”
IEEE Computer July 1998: 33-44.

About the Authors
Barry Boehm, Ph.D., is
the TRW professor of
software engineering and
director of the Center
for Software Engineering
at the University of

Southern California. He was previously
in technical and management positions
at General Dynamics, Rand Corp., TRW,
and the Defense Advanced Research
Projects Agency, where he managed the
acquisition of more than $1 billion
worth of advanced information technol-
ogy systems. Boehm originated the spiral
model, the Constructive Cost Model,
and the stakeholder win-win approach to
software management and requirements
negotiation.

University of Southern California
Center for Software Engineering
941 W 37th PL
SAL RM 328
Los Angeles, CA 90089-0781
E-mail: boehm@usc.edu

Jo Ann Lane is currently
a research assistant sup-
porting software engi-
neering and system-of-
systems research activi-
ties at the University of

Southern California’s Center for
Software Engineering. In this capacity,
she is currently working on a cost model
to estimate the effort associated with
system-of-systems architecture defini-
tion and integration. Prior to this, she
was a key technical member of Science
Applications International Corporation’s
Software and Systems Integration Group.
She has over 28 years of experience in
the development of software-intensive
systems.

University of Southern California
Center for Software Engineering
941 W 37th PL
SAL Room 328
Los Angeles, CA 90089-0781
E-mail: jolane@usc.edu

COMING EVENTS

June 17-21
33rd Annual International Symposium

on Computer Architecture (ISCA 2006)

Boston, MA
www.ece.neu.edu/conf/isca2006

June 19-22
CISC 2006 Combat Identification

Systems Conference
Orlando, FL

www.usasymposium.com/cisc

June 25-30
18th Annual FIRST (Forum of Incident

Response and Security Teams)
Conference on Computer Security and

Incident Handling
Baltimore, MD

www.first.org/conference/2006

June 26-29
SERP 2006

International Conference on Software
Engineering Research and Practice

Las Vegas, NV
http://people.cs.und.edu/~reza/

SERP06.html

June 26-30
2006 Better Software
Conference and Expo

Las Vegas, NV
www.sqe.com/bettersoftwareconf.org

June 27-29
CMSE Europe

Components for Military and Space
Electronics Workshop and Conference

Portsmouth, U.K.
www.cmse-eur.com

April 16-19, 2007
2007 Systems and Software

Technology Conference

Salt Lake City, UT
www.sstc-online.org

